
CS61B Spring 2024

Graphs II, Tries
Discussion 10

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

4/1
Project 2B/2C due

4/5
Lab 09 due

4/12
Lab 10 due

CS61B Spring 2024

Content Review

CS61B Spring 2024

Tries

Tries are special trees mostly used for language tasks.

Each node in a trie is marked as being a word-end (a “key”) or not, so you can quickly check whether a word

exists within your structure.

C

A

T

C

H

D

O

G

I

G

CS61B Spring 2024

Topological Sort

Topological Sort is a way of transforming a directed acyclic graph into a linear ordering of vertices, where for

every directed edge u v, vertex u comes before v in the ordering.

5

4

0

2

1

3 5 4 2 3 1 0

CS61B Spring 2024

Topological Sort

Key Ideas:
- Not having a topological sort indicates a that the graph has directed cycle (only works on DAGs)

- Most DAGs have multiple topological sorts

- Source node: a node that has no incoming edges

- Sink node: a node that has no outgoing edges

5

4

0

2

1

3 5 4 2 3 1 0

CS61B Spring 2024

Graph Algorithm Runtimes

For a graph with V vertices and E edges:

Graph Algorithm Runtime

DFS O (V + E)

BFS O (V + E)

Dijkstra's O((V + E) log V)

A* O((V + E) log V)

Prim’s O((V + E) log V)

Kruskal’s O(E log E)

CS61B Spring 2024

Worksheet

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

For example, if a TrieSet t contains keys {"cryst", "tries", "cr"}:
t.longestPrefixOf("crystal") returns "cryst"
t.longestPrefixOf("crys") returns "crys"

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

The code uses the StringBuilder class to build strings
character-by-character. To add a character to the end of the StringBuilder,
use the append(char c) method.

Once all characters have been appended, the resulting String is returned
by the toString() method.

StringBuilder sb = new StringBuilder();
sb.append('a');
sb.append('b');
System.out.println(sb.toString()); // "ab"

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();
Node curr = ____________________________;

for (___________________________________) {

}

return ____________________________________
}

public class TrieSet {
private class Node {

boolean isKey;
Map<Character, Node> map;

private Node() {
isKey = false;
map = new HashMap<>();

}
}

private Node root;

...
}

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

Traverse the trie until you reach a character in key that’s missing!

public class TrieSet {
private class Node {

boolean isKey;
Map<Character, Node> map;

private Node() {
isKey = false;
map = new HashMap<>();

}
}

private Node root;

...
}

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

C

R

Y

T

R

I

S

T

E

S

t.longestPrefixOf(“crystal”);

curr

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i); // i = 0, c = ‘c’
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c); // prefix = <’c’>

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i); // i = 1, c = ‘r’
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr
C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c); // prefix = <’c’, ‘r’>

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr
C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i); // i = 2, c = ‘y’
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr
C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c); // prefix = <’c’, ‘r’, ‘y’>

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i); // i = 3, c = ‘s’
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c); // prefix = <’c’, ‘r’, ‘y’, ‘s’>

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i); // i = 4, c = ‘t’
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c); // prefix = <’c’, ‘r’, ‘y’, ‘s’, ‘t’>

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i); // i = 5, c = ‘a’
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString();

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

1 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns
the longest prefix of word that is also a prefix of a key in the trie.

public String longestPrefixOf(String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();

Node curr = root;
for (int i = 0; i < n; i++) {

char c = word.charAt(i);
if (!curr.map.containsKey(c)) {

break;
}
curr = curr.map.get(c);
prefix.append(c);

}
return prefix.toString(); // returns “cryst”

}

t.longestPrefixOf(“crystal”);

curr

C

R

Y

T

R

I

S

T

E

S

CS61B Spring 2024

2 A Tree Takes on Graphs

Your friend at Stanford has come to you for help on their
homework! For each of the following statements,
determine whether they are true or false; if false, provide
counterexamples.

CS61B Spring 2024

2A A Tree Takes on Graphs

 “A graph with edges
that all have the same
weight will always have

multiple MSTs."

CS61B Spring 2024

2A A Tree Takes on Graphs

 “A graph with edges
that all have the same
weight will always have

multiple MSTs."
A

B C

False! A tree will only have one way to be
connected, so it is its own MST

1 1

ED F

1 11

CS61B Spring 2024

2B A Tree Takes on Graphs

“No matter what heuristic
you use, A* search will
always find the correct

shortest path."

CS61B Spring 2024

2B A Tree Takes on Graphs

“No matter what heuristic
you use, A* search will
always find the correct

shortest path." B

A

C

1

1
D

10

1

(1)

(0)

(100)

(2)

False! A* sets the priority to
node v to be distTo[v] + h(v).
Because our heuristic for C is
very inaccurate, A* prefers
exploring B and D before ever
going to C.

A* returns A → B → D rather
than A → C → D, even though
the second is shorter!

CS61B Spring 2024

2C A Tree Takes on Graphs

"If you add a constant
factor to each edge in a

graph, Dijkstra's algorithm
will return the same
shortest paths tree."

CS61B Spring 2024

2C A Tree Takes on Graphs

"If you add a constant
factor to each edge in a

graph, Dijkstra's algorithm
will return the same
shortest paths tree."

A

B

C
3

1 1

A

B

C
5

3 3

False! After adding 2 to all of the edges
in the graph, the shortest paths tree
from A changes

Extra challenge: What about multiplying each edge weight by a constant factor?

CS61B Spring 2024

3A Class Enrollment
You’re planning your CS classes for the upcoming semesters, but it’s hard to keep track of all the
prerequisites! Let’s figure out a valid ordering of the classes you’re interested in. A valid ordering is an
ordering of classes such that every prerequisite of a class is taken before the class itself. Assume we’re
taking one CS class per semester.

The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 161: CS 61C, CS 70
● CS 170: CS 61B, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

CS61B Spring 2024

3A Class Enrollment
The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 170: CS 61B, CS 70
● CS 161: CS 61C, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

61A

CS61B Spring 2024

3A Class Enrollment
The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 170: CS 61B, CS 70
● CS 161: CS 61C, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

61A 61B

CS61B Spring 2024

3A Class Enrollment
The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 170: CS 61B, CS 70
● CS 161: CS 61C, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

61A 61B 61C

CS61B Spring 2024

3A Class Enrollment
The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 170: CS 61B, CS 70
● CS 161: CS 61C, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

70

61A 61B 61C

CS61B Spring 2024

3A Class Enrollment
The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 170: CS 61B, CS 70
● CS 161: CS 61C, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

70 170

61A 61B 61C

CS61B Spring 2024

3A Class Enrollment
The list of prerequisites for each course is given below (not necessarily accurate to actual courses!).
Draw a graph to represent our scenario.

● CS 70: None
● CS 170: CS 61B, CS 70
● CS 161: CS 61C, CS 70

● CS 61A: None
● CS 61B: CS 61A
● CS 61C: CS 61B

70 170 161

61A 61B 61C

CS61B Spring 2024

3B Class Enrollment
Suppose we added a new prerequisite where the student must take CS 161 before CS 170 and CS 170
before CS 61C. Is there still a valid ordering of classes such that no prerequisites are broken? If no,
explain.

70 170 161

61A 61B 61C

CS61B Spring 2024

3B Class Enrollment
Suppose we added a new prerequisite where the student must take CS 161 before CS 170 and CS 170
before CS 61C. Is there still a valid ordering of classes such that no prerequisites are broken? If no,
explain.

61A 61B 61C

70 170 161

No.

Graph is no longer acyclic
because of CS 61C, CS 170, and
CS 161. There is no way to order
these classes and satisfy all
prerequisite constraints!

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

70 170 161

61A 61B 61C

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

61A 61B 61C

70 170 161

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

61A 61B 61C

70 170 161

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A
Postorder:

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B
Postorder:

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B 61C
Postorder:

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B 61C 161
Postorder:

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B 61C
Postorder: 161

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B
Postorder: 161 61C

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B 170
Postorder: 161 61C

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A 61B
Postorder: 161 61C 170

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 61A
Postorder: 161 61C 170 61B

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack:
Postorder: 161 61C 170 61B 61A

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack: 70
Postorder: 161 61C 170 61B 61A

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack:
Postorder: 161 61C 170 61B 61A 70

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Stack:
Postorder: 161 61C 170 61B 61A 70

Valid/Topologically Sorted Order:
70 61A 61B 170 61C 161

61A 61B 61C

70 170 161

CS61B Spring 2024

3C Class Enrollment
With the original graph, perform a topological sort to find a valid ordering of the 6 classes. Break ties by
going to the lower course number first.

DFS from every vertex with no incoming edges and
compute the postorder

don’t reset the marked nodes!
Reverse the postorder to get a topologically sorted
order

Also works if you DFS from 70 before 61A
61A 61B 61C 70 170 161

61A 61B 61C

70 170 161

CS61B Spring 2024

4A Graph Algorithm Design

An undirected graph is said to be bipartite if all of its vertices can be divided into two disjoint sets U and V
such that every edge connects an item in U to an item in V. For example below, the graph on the left is
bipartite, whereas on the graph on the right is not. Provide an algorithm which determines whether or not
a graph is bipartite. What is the runtime of your algorithm? Hint: Can you modify an algorithm we already
know (ie. graph traversal)?

U V U

V

V

U V ?

CS61B Spring 2024

4A Graph Algorithm Design

BFS or DFS! If a node is in set U, then all neighbors must be in set V.
● If we try to label a neighbor as u but they’ve already been labeled v → not bipartite
● If we successfully mark every node → bipartite

Runtime: Θ(V + E), same as BFS or DFS

U V U

V

V

U V ?

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 if the vertex was not already marked:
 mark the vertex you just popped
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe: A

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe:

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe: D C B

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe: D C

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe: D C

C and D are already marked!

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe: D

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe: D

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe:

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

Fringe:

CS61B Spring 2024

4B Graph Algorithm Design
Consider the following implementation of DFS, which contains an error:

create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Identify the bug, then give an example of a graph where this
algorithm may not traverse in DFS order.

A

CB

D

This DFS implementation visited A → B → C → D.
A correct implementation should visit A → B → D → C.

CS61B Spring 2024

4C Graph Algorithm Design Extra
Provide an algorithm that finds the shortest cycle (in terms of the number of edges used) in a directed graph in
O(EV) time and O(E) space, assuming E > V.

